bge-m3
Text Embeddings • baaiMulti-Functionality, Multi-Linguality, and Multi-Granularity embeddings model.
Model Info | |
---|---|
Pricing | $0.012 per M input tokens |
Usage
Workers - TypeScript
export interface Env { AI: Ai;}
export default { async fetch(request, env): Promise<Response> {
// Can be a string or array of strings] const stories = [ "This is a story about an orange cloud", "This is a story about a llama", "This is a story about a hugging emoji", ];
const embeddings = await env.AI.run( "@cf/baai/bge-m3", { text: stories, } );
return Response.json(embeddings); },} satisfies ExportedHandler<Env>;
Python
import osimport requests
ACCOUNT_ID = "your-account-id"AUTH_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
stories = [ 'This is a story about an orange cloud', 'This is a story about a llama', 'This is a story about a hugging emoji']
response = requests.post( f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/baai/bge-m3", headers={"Authorization": f"Bearer {AUTH_TOKEN}"}, json={"text": stories})
print(response.json())
curl
curl https://api.cloudflare.com/client/v4/accounts/$CLOUDFLARE_ACCOUNT_ID/ai/run/@cf/baai/bge-m3 \ -X POST \ -H "Authorization: Bearer $CLOUDFLARE_API_TOKEN" \ -d '{ "text": ["This is a story about an orange cloud", "This is a story about a llama", "This is a story about a hugging emoji"] }'
Parameters
* indicates a required field
Input
- BGE M3 Input Query and Contexts object
-
query
string min 1A query you wish to perform against the provided contexts. If no query is provided the model with respond with embeddings for contexts
-
contexts *
arrayList of provided contexts. Note that the index in this array is important, as the response will refer to it.
-
items
object-
text
string min 1One of the provided context content
-
-
-
truncate_inputs
booleanWhen provided with too long context should the model error out or truncate the context to fit?
-
- BGE M3 Input Embedding object
-
text *
one of-
0
string min 1The text to embed
-
1
arrayBatch of text values to embed
-
items
string min 1The text to embed
-
-
-
truncate_inputs
booleanWhen provided with too long context should the model error out or truncate the context to fit?
-
Output
- BGE M3 Ouput Query object
-
response
array-
items
object-
id
integerIndex of the context in the request
-
score
numberScore of the context under the index.
-
-
-
- BGE M3 Output Embedding for Contexts object
-
response
array-
items
array-
items
number
-
-
-
shape
array-
items
number
-
-
pooling
stringThe pooling method used in the embedding process.
-
- BGE M3 Ouput Embedding object
-
shape
array-
items
number
-
-
data
arrayEmbeddings of the requested text values
-
items
arrayFloating point embedding representation shaped by the embedding model
-
items
number
-
-
-
pooling
stringThe pooling method used in the embedding process.
-
API Schemas
The following schemas are based on JSON Schema
{ "type": "object", "oneOf": [ { "title": "BGE M3 Input Query and Contexts", "properties": { "query": { "type": "string", "minLength": 1, "description": "A query you wish to perform against the provided contexts. If no query is provided the model with respond with embeddings for contexts" }, "contexts": { "type": "array", "items": { "type": "object", "properties": { "text": { "type": "string", "minLength": 1, "description": "One of the provided context content" } } }, "description": "List of provided contexts. Note that the index in this array is important, as the response will refer to it." }, "truncate_inputs": { "type": "boolean", "default": false, "description": "When provided with too long context should the model error out or truncate the context to fit?" } }, "required": [ "contexts" ] }, { "title": "BGE M3 Input Embedding", "properties": { "text": { "oneOf": [ { "type": "string", "description": "The text to embed", "minLength": 1 }, { "type": "array", "description": "Batch of text values to embed", "items": { "type": "string", "description": "The text to embed", "minLength": 1 }, "maxItems": 100 } ] }, "truncate_inputs": { "type": "boolean", "default": false, "description": "When provided with too long context should the model error out or truncate the context to fit?" } }, "required": [ "text" ] } ]}
{ "type": "object", "contentType": "application/json", "oneOf": [ { "title": "BGE M3 Ouput Query", "properties": { "response": { "type": "array", "items": { "type": "object", "properties": { "id": { "type": "integer", "description": "Index of the context in the request" }, "score": { "type": "number", "description": "Score of the context under the index." } } } } } }, { "title": "BGE M3 Output Embedding for Contexts", "properties": { "response": { "type": "array", "items": { "type": "array", "items": { "type": "number" } } }, "shape": { "type": "array", "items": { "type": "number" } }, "pooling": { "type": "string", "enum": [ "mean", "cls" ], "description": "The pooling method used in the embedding process." } } }, { "title": "BGE M3 Ouput Embedding", "properties": { "shape": { "type": "array", "items": { "type": "number" } }, "data": { "type": "array", "description": "Embeddings of the requested text values", "items": { "type": "array", "description": "Floating point embedding representation shaped by the embedding model", "items": { "type": "number" } } }, "pooling": { "type": "string", "enum": [ "mean", "cls" ], "description": "The pooling method used in the embedding process." } } } ]}
Was this helpful?
- Resources
- API
- New to Cloudflare?
- Products
- Sponsorships
- Open Source
- Support
- Help Center
- System Status
- Compliance
- GDPR
- Company
- cloudflare.com
- Our team
- Careers
- 2025 Cloudflare, Inc.
- Privacy Policy
- Terms of Use
- Report Security Issues
- Trademark